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Local field muon transverse depolarization and nuclear 
free induction decay at low temperatures 
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Physics Depanment. University of New England, Amidale, NSW 2351, Australia 

Received 4 October 1993, in final form 14 February 1994 

Abstract. The form of the t r a n s v ~ e  depolarization function of an I spin due to dipolar 
interaction with a system of S spins is analysed for local field inleractions without using the 
high-temperature approximation. This analysis is valid m the absence of diffusion and in the 
presence of a large. static exlemal magnetic field. It is relevant lo muons implanted in metals 
and to lhe free induction decay of dilute I nuclei in a system of S nuclei, for which the local 
field model is valid for shon times. An analytic expression for the msve r se  depolarimion 
function is obtained using the Boltzmann distribution for the occupation of Zeeman states of 
the S spins at a temperature T .  The behaviour of the depolarization function depends on the 
ratio of the extemal magnetic field B lo lhe lemperame T and three regimes are identified. For 
small BIT the familiar high-temperature result is independent of BIT and sample shape. For 
intermediate values of BIT the depolarization function depends on BIT and has an envelope 
that is independent of sample shape and a time-dependent phase that is dependent on sample 
shape. For larger values of BIT lhe depolarization function is again independent of BIT 
with the phase remaining dependent on sample shape. The resulll indicate the effects that 
a u l d  be observed at values of BIT larger than those corresponding to the high.tempenture 
approximation and provide the values of BIT at which lhese would be apparent. 

1. Introduction 

The general problem of calculating the transverse magnetization free induction decay (FID) 
due to magnetic dipolar interactions remains unsolved for crystals. In the absence of 
diffusion and in the presence of a sufficiently large external magnetic field, the only relevant 
parts of the dipolar Hamiltonian, for like spins, are the secular contributions A and B where 
the A term corresponds to classical local field effects and the B term causes flip-flops 
between pairs of spins because each precessing nuclear moment produces a time-varying 
magnetic field at the resonance frequency of the other (Abragam 1961). The difficulty in 
obtaining a general solution for the FID arises because the A and B terms do not commute. 

The local field model consists of retaining only the A terms and an analytic expression 
for the FID, in the form of an infinite product. can then be obtained in the high-temperature 
limit &owe and Norberg 1957, Gade and Lowe 1966, Lee et al 1967). This work also 
developed methods for obtaining series corrections to the local field RD to account for the 
B terms (see also Betsuyaka 1970). 

In the case of unlike-spin dipolar interactions, only the A terms are secular and the B 
terms can be neglected. In a two-spin ( I  and S) component system where the I spins are 
dilute, or have small magnetic moments, the dipolar interaction between the I spins will 
be negligible. The calculation of the FID for the I spins need then only consider the local 
field A term for the I-S interaction but both the A and B terms still need to be retained 
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for the indirect S-S interaction effect on the Z spin FU). The flip-flop effect of the B term 
for the S-S interaction is, however, similar to motional narrowing (Abragam 1961. p 123) 
and does not affect the form of the im at short times. 

The local field model is therefore an excellent approximation for dilute or weakly inter- 
acting Z spins in a system of S spins, at shon times, in the absence of diffusion and in the 
presence of an external magnetic field very much larger than the dipolar magnetic fields 
experienced by the spins. These are the restrictions that are imposed throughout this paper. 
An important example of such a system is the transverse depolarization of positive muons 
in metals (Schenck 1985). The depolarization function of muons implanted in metals with a 
polarization transverse to the magnetic field is identical to the im, the muons are extremely 
dilute and only the very-short-time behaviour of the depolarization function can be observed 
because of the 2.2 ps half-life of the muons. When the external field is comparable to the 
dipolar field, or when diffusion occurs, all terms in the dipolar Hamiltonian must be included 
in the calculation of the depolarization function and this has recently been considered by 
Dalmas de R€otier and Yaouanc (1992) using an iterative procedure. 

The muon depolarization function, in the absence of diffusion and in the presence of a 
large external field, is often assumed to be a Gaussian but a detailed local field calculation 
(Cameron and Sholl 1991) has shown this can be a poor approximation in some cases. 
This work also considered the accuracy of the commonly used Abragam approximation 
(Abragam 1961) when slow or rapid muon diffusion occurs. The local field theory in the 
absence of diffusion has also been extended (Cameron and Sholl 1993) to include the effect 
of electric quadrupolar interactions between the quadrupole moment of the metal spins and 
the elec!zic field gradient produced by the muon. 

AI1 the above theory has assumed the high-temperature approximation for which the 
populations of the Zeeman states of the S spins are equal. The purpose of the present work 
is to examine the local field theory, in the absence of diffusion and quadrupolar interactions, 
for low temperatures at which the Boltzmann distribution for the populations of the Zeeman 
states must be taken into account. The results for the depolarization function can therefore 
indicate the effects that could be observed at low temperatures and the magnetic fields 
and temperatures which would be required to observe deviations from the high-temperature 
behaviour. 

Since the interaction between the Z spins is assumed negligible, the system to be 
considered is a single I spin in a system of S spins where only the local field A terms 
of the dipolar I -S  and S-S interactions are retained, The Z spin is assumed to have an 
initial non-zero polarization (magnetization) lransverse to an external magnetic field. For 
implanted muons in metals this is a result of the polarization of the incident beam and for 
nuclei in crystals could be produced by a radio-frequency pulse. The depolarization function 
for such systems is derived in section 2. The explicit form of it at arbitrary temperatures and 
some examples are given in section 3 and section 4. The implications for the experimental 
observation of low-temperature effects are discussed in section 5. 

L EA Cameron and C A  Sholl 

2. Theory of transverse depolarization 

A spin system consisting of one Z spin and many identical S spins in a magnetic field B 
has the spin Hamiltonian 
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where the first two terms are the Zeeman interactions of the Z and S spins and 'Hd is the 
magnetic dipolar interaction between the Z and S spins and between the S spins. The 
L m o r  frequencies w, and ws are W I  = -y, B and os = -ysB where y, and ys are the 
respective gyromagnetic ratios. 

The spin density operator p for this system has the equation of motion 

which has the solution 

p( t )  = exp(-iXt/h)p(O) exp(i'Ht/h) (3) 
when the Hamiltonian 1-1 is independent of time. The time development of the components 
of the polarization of the Z spin transverse to B are the real and imaginary parts of the 
complex depolarization function ( I+)  given by 

(4) 
where Z+ = Z, + iZ, and the trace involves states for the I spin and all S spins. The 
density operator p ( 0 )  may be written as p,(O)ps where p ~ ( 0 )  depends on the way in which 
the initial non-equilibrium transverse polarization of the Z spin is established. The p s  for 
equilibrium of the S spins in a magnetic field B and at a temperature T is 

(5 )  
j 

where cq = hos / ( kT)  and 2 = nj 2j = Trs{exp[-'Hzs/(kT)]} is the partition function 
with Trs denoting the trace over the S spins only. It will be seen that the value 
of the parameter as determines the magnetic field and temperature dependence of the 
depolarization function in the rotating frame. This dependence therefore occurs through 
the ratio BIT of the magnetic field and temperature. 

The transformation to the frame of reference rotating at the Larmor frequency o, of the 
I spin is made by applying the transformation U* of an operator U defined by 

(Z+) = Tr{p(t)Z+} = Tr(exp(-i'Ht/h)p(O) exp(iXt/h)Z+J 

PS = ~ X P [ - X Z S / ( W I / ~  = n exp(-rus~j,)/~j 

U* = exp(io,Z,t)Uexp(-iolZzt) (6) 
to the operators p ,  'FI and Z+. Equation (4) then becomes 

( I+)  = Tr{p*(t)ZT} = exp(io,t)(Z+)* 
where the complex transverse depolarization in the rotating frame (Z+)* is 

(I+)* = TrIp*(t)Z+l. 
The equation of motion of p* is 

(7) 

which has the solution 

p" ( t )  = exp(-i1-1:ijfi)p(O) exp(i'FI:t/h) (10) 
if 'FI; is independent of time. 

If the x and y axes are chosen so that the initial polarization along the y axis is zero, then 
at time I = 0, ( I+)  and (I+)* are both given by Tr{p(0)Zx}. The transverse depolarization 
functions, F ( t )  in the laboratory frame and F*(t )  in the rotating frame, are then 

F ( t )  = exp(io,t)F*(t) (11) 

F* ( r )  = Tr(exp(-i'Flir / h ) p  (0) exp(i'Hatp)Z+ }/Tr{p (0) I, ) (12) 
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where F(0)  = F'(0) = 1. The real parts of F ( t )  and F*(t)  describe the depolarization of the 
component of the polarization in the x direction and the imaginary parts the depolarization 
of the component in the y direction in the laboratory and rotating frames, respectively, No 
approximations have been made in deriving these expressions. 

The local field part 1-I& of the dipolar Hamiltonian xd in equation (1) is (Abragam 1961) 

L M Cameron and CA Sholl 

where the prime denotes the exclusion of the terms j = k from the sum, 

aj = YIYshZ(i - ~ C O S ~ B ~ ) / ~ ;  (14) 

and rj = (rj .  O j ,  q5 j )  is the vector from the I spin to the j th  S spin with the polar angles 
defined relative to the direction of the magnetic field. The ajk are the corresponding 
quantities for the j th  and kth S spins. 

Since Xr = XL, equation (12) for F'( t )  becomes the local field expression F [ ( f )  given 

F;(t) = Tr(exp(-iAd/R)p(O) exp(iAtsr/R)l+)lTrIp(o)l,) (15) 

using the result that both AIS and ps commute with Ass and pl(0).  Equation (15) does not 
involve the term Ass describing the local field interaction between S spins. 

Writing the trace for the I spin in a Zeeman representation and using the result that 
(m'lI+ Im) is zero unless m' = m + 1, it follows that 

by 

This expression is independent of pl (0)  and therefore F;(r) is independent of the manner 
in which the initial non-equilibrium polarization of the I spin is established. For example, 
the local field transverse depolarization is the same for both an implanted muon and an I 
spin acted on by a pulse to rotate the polarization away from the z direction. 

Writing the trace for each S spin in a Zeeman representation, F;(r) becomes 

i m  

where g(m) = (mIps,Im) is the probability of the jth S spin having the %man quantum 
number m. The Fourier transform 

exp(-iot)Ft(f) df 

is the normalized distribution of frequencies, relative to w ~ .  of the precession of the I spin 
due to the statistical distribution of magnetic moment orientations of the S spins. The local 
field complex depolarization function F;(r) in the rotating frame is the Fourier transform 
of this frequency distribution (Cohen and Reif 1957, Cameron and Sholl 1993). 

Equation (17) provides a simple expression to evaluate the local field depolarization 
function for any distribution g ( m )  at each S spin site j. For example, the familiar result in 
the high-temperature limit (Lee. et al 1967, Gurevich et al 1972). 
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is obtained by using g ( m )  = 1/(2S + 1) in equation (17). Another example is the classical 
case, again in the high-temperature limit, for which g ( m )  = 1/(2S) and the summation over 
m is replaced by an integral. The result is then 

The value of S in this case simply scales the time, unlike the quantum case described by 
equation (19). 

The moments M, of the frequency distribution f(w). defined by 
m 

M. = l, f (U)@" dw 

are related to the derivatives of F[( t )  by (Abragam 1961) 

Using equation (22), the moments for the expression (16) for F;(f) are 

Writing the trace in a Zeeman representation gives the first two moments as 

In the high-temperature limit for which ps, = 1/(2S + 1). these become the well known 
Van Vleck (1948) results, MI = 0 and MZ = [S(S + 1)/(3h2)] cj a:. Equations (24) and 
(25) can also be calculated for the classical, high temperature case for which psi = 1/(2S) 
and the summations over m are replaced by integrals between -S and S. The results are 
then M I  = 0 and MZ = [S2/(3h2)1 cj U;. 

For arbitrary temperatures, for which ps is given by the Boltzmann density operator 
of equation (5). equation (24) is identical to the expression for MI given by Abragam and 
Goldman (1981, p 285) for a system consisting of one I spin and many S spins. Since 
Abragam and Goldman do not make the local field restriction it can be concluded that MI 
for this system will always be local field in nature. 

The high-temperature expressions (19) and (20) are real expressions for F f ( t )  and have 
odd moments which are zero because g(m)  is an even function. If the polarization along 
the y axis in the rotating frame is initially zero, it remains zero. These statements are not 
true for arbitrary temperatures considered in the next section. 

3. Results for arbitrary temperatures 

The form of the local field depolarization function F;(t)  when the high-temperature 
approximation is not made is obtained by substituting the density operator for the Boltzmann 
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distribution given by equation (5) into equation (17). The result is (Cameron 1992) 

L M Cameron and CA Sholl 

(26) 
- [A, ( t )  - iEj(t)Jsinh(a~/2) - 

[cos(ajr/h) - cosh(as)J sinh[(2S + l)as/2] 

where us = hos/(kT) and A,(t)  and Bj(r )  are given by 

Aj(r) = cos[(S + I)ajr/h] cosh(Sas) - cos(Sajr/h) cosh[@ + I)as] 

Ej(t) = sin[(S + I)ajr/hJ sinh(Sas) - sin(Sujt/fi) sinh[(S + 1)rusl. 

(27) 

(28) 

The result for the classical case under conditions of arbitrary temperature, for which 
the probability distribution of allowed orientations of the S spin to the z axis is given by a 
continuous Bo~tzmaM function, may be evaluated in a similar way and the result is 

where Cj(t) and D,(r) are given by 

Cj(t) = us cos(Sajt/h) sinh(Sas) + (ajt/h) sin(Sajt/h) cosh(Sas) 

Dj(t)  = assin(Sajt/h) cosh(Sas) - (a,r/h) cos(Sajiajr/fi) sinh(Sas). 

(30) 

(31) 

The expressions (26) and (29) for F [ ( r )  are complex and, as shown below, M I  is non- 
zero because the probability g(m) of an S spin being in the Zeeman state m is not an even 
function. "be  polarization along the y axis in the rotating frame is non-zero, except at 
time zero, and the frequency distribution f (U) is not symmetric. A complete picture of the 
depolarization function in the rotating frame can be obtained by considering functions G(r) 
and @(r) defined by 

FL*(f) = GO) exp(i@(t)) (32) 

where G(t)  is the magnitude of the complex polarization and @(r) describes its motion 
with respect to the rotating frame. In the high-temperature case, the depolarization function 
measured in the laboratory frame is a decaying, oscillatory function with oscillations of 
constant frequency 01 whereas, if the high-temperature approximation is not made, the 
amplitude function describing the decay will differ from the high-temperature function and 
the presence of @(I) indicates that there is a time-dependent phase shift of the sinusoidal 
oscillations. 

In the limit as -+ 0, equations (26) and (29) for F;(t)  reduce to their high temperature 
counterparts, equations (19) and (20). A limiting form of both equations (26) and (29) also 
exists for very low temperatures (or very high fields) corresponding to as + W. In this limit 
it can be shown that G(t) + 1 and, by considering the form of Re(FL(r)) = G(t)cos@(t), 
that +(r) + S Cj ujt/h. The form of F;(r) as as + w is then 

The first and second local field moments MI and Mz can be obtained either by direct 
evaluation of the expressions (24) and (25) using the Boltzmann density operator of equation 
(5) or by expanding equations (26) and (29) as a series in r and using equation (22). The 
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results for both the quantum case described by equation (26) and for the classical case 
described by equation (29) may be expressed in the form 

where Ql  and Qz are functions of S and as. For the quantum case Ql and Q2 are given 
by 

Ssinh[(S + 1)asl - (S + 1) sinh(Sas) 
cosh(Sas) - cosh[(S t l ) ~ s ]  QI = 

(37) 

These have the limiting values 0 and S(S + 1)/3 as as -+ 0, and -S and S2 as as + CO, 

respectively. For the classical case the results are 

(38) 
(39) 

which have the limiting values 0 and S2/3 as as + 0, and - S  and S2 as as -+ CO, 

respectively. In the limit as -+ 0, the expressions (34) and (35) for MI and M2 reduce to 
the high-temperature expressions. As as -+ CO, Mz = M; for both of the above cases and 
therefore, from equation (33), F,‘(t) -+ exp(-iMlt). 

The above discussion shows that both for sufficiently small and sufficiently large as, 
FT(t). MI and MZ are independent of the temperature and the magnitude of the external 
magnetic field, although the assumption that the external field is sufficiently large remains. 
It is of interest to examine the range of values of as between the 01s + 0 (high-temperature) 
and 01s -+ 00 (low-temperature or very-high-field) limits for which effects which are 
dependent on temperature (and on the strength of the external field) could be observed. 
An indication of this region can be obtained by calculating Ql and Q2 as functions of as. 
The quantum and classical forms of Ql and Q2 as given by equations (36)439) are shown 
in figure 1 for S = 4, 4 and 2. The greamt dependence on 01s occurs for larger values of S 
and for S = 4 there is no as dependence of Qz for the quantum case. The figure suggests 
that the range of values of as over which temperature-dependent effects could be observed 
is - 0.1-5. In the case of copper ( S  = $), for example, this corresponds approximately to 
B/T between 200 and lo4 T K-I. 

The summation cjaj a E,(’ - 3coszOj)/r~ is conditionally convergent and for this 
reason the values of the moments, which contain terms such as cj aj and &;apt ,  can 
depend on the shape of the sample. Terms such as Ej  a: are absolutely convergent and are 
independent of the sample shape (Abragam and Goldman 1981, ch 5) .  Although F,‘(t) can 
be expanded as an infinite series in t with coefficients depending on the moments Mn and 
may therefore be dependent on the sample shape, it can be shown that the amplitude G(t )  
is independent of the sample shape. This result follows from expanding GZ(t )  = IF,‘(t)12 
as a power series in t and noting that the coefficients involve only absolutely convergent 
summations of the form cj(a,”,”. The moments and the phase function + ( t )  are, however, 
shape dependent. This shape dependence still exists in the very-low-temperature (or very- 
high-field) limit because conditionally convergent summations are present in the cis + CO 

1 
1 - cosh(as) ’ 

- ( S  + 1)2 cosh(Sas) - S*COSh[(S + l ) ~ s ]  
COSh(Sas) - COSh[(S + I)~rs] Qz = 

QI = 11 - S a . y ~ ~ t h ( S a s ) ] / ~ ~ s  

Qz = {2[1 - S ( ~ s ~ ~ t h ( S o ~ s ) l +  ( S ~ r s ) ~ } / a i  
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7.5 1 I 1 1 1 1 1 1 (  I 1 l 1 1 1 1 1 (  I l 1 1 1 1 1 1 (  I I l l l l l l ~  7.5 

5.0 1 , 5.0 

as 
Figure 1. The variation of lhc parameten QI and Ql, as defined by equations (36x39). as a 
function of us = hos/ (kT)  for S = 4. 3 and ;. The values of QI are positive and the values 
of QI are negative, The solid c w e s  axe the mults for the quanlum w e  and the dashed CUNS 

axe the results for the classical case. 

forms of these quantities, even though no shape dependence occurs in the high-temperature 
limit (IS + 0. 

The 
summation C a, for the system of one I spin and many crystallographically equivalent S 

of the I spin within the ellipsoid. For a cubic structure of S spins. the summation taken 
over a cube is also zero. It is then possible, as discussed by Abragam and Goldman, to 
treat the problem of calculating E, aj by separating the sample into an internal region and 
an external region, choosing the internal region to be a sphere centred on the I spin so 
that the contribution to E, aj from the spherical intemal region is zero and the external 
contribution then gives the value of E, aj. The result will converge for a particular shape 
but the convergence is very slow and the converged value will depend on the shape chosen. 
The convergence of F t ( t ) ,  MI and MZ under arbitrary temperature conditions is therefore 
quite slow compared to the rate of convergence of these quantities in the high-temperature 
case. 

Abragam and Goldman (1981) have discussed the shape dependence of MI. 

spins is zero d OJ a spherical sample, and for an ellipsoid does not depend on the position 

4. Examples 

The transverse depolarization functions &(I) in the laboratory frame and FZ(t) in the 
rotating frame are related by equation (11) and FL(t) is specified by its magnitude G(I) 
and phase factor +(I) as defined in equation (32). To illustrate the type of behaviour 
that can OCCUJ, some results of calculations of the amplitude function G(t )  and the phase 
function +(t) are presented in figures 2. 3 and 4. These results are for the I spin at 
an octahedral site in copper (FCC lattice, S = $, ys = 2rr x 1.1533 x 10' Hz T-I) for 
which the parameter as = Aws/(kT) = ( - f i y s / k ) ( B / T )  has magnitude (5.535 x K 
T - ' ) ( B / T ) .  The sign of as is determined by the sign of ys. The function G(#) and the 
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second moment Mz are even functions of US while the function # ( r )  and the first moment 
M I  are odd functions of as. The results in figures 2-5 are shown for positive as. The units 
of time are chosen. by considering the high-temperature expression for Mz, to be U where 
a* = 3a6/[$yjS(S + l )hZ]  and a is the lattice parameter. For muons in copper, a = 64.9 
P. 

In the high-temperature limit the amplitude function G(t)  is of Gaussian form at short 
times but it can show significant deviation from a Gaussian at longer times (Cameron and 
Sholl 1991). This is also the case for G(t) at low temperatures. The major effect as BJT  
increases is that GO) decays more slowly as shown in figure 2 for two directions of the 
magnetic field. The limiting form as BIT + CO is G ( f )  = 1 as discussed in the previous 
section. These results do not depend on the shape of the sample. 

- 

- 
- 

- 

0.2 - 
- 

0.00 0.05 0.10 0.15 0.20 

t 
Figure 2. The amplitude function G(r) as defined by equation (32) for the I spin at an octahedral 
site in a copper crystal and the magnetic field in the [I001 and [ 1 IO] directions. The shon-dprhed 
curves are lhe results for BIT = I000 T K-’ (us = 0.5535) and the longdashed curves are for 
BIT = 2000 T K-1 (LIS = 1.107) and. for comparison, the high-temperature (LIS + 0) result 
is shown for each field direction by the solid curves. The amplitude function is independent OF 
the shape of the sample. The time t is in the dimensionless units defined in section 4. 

The phase function # ( t )  is shown in figures 3 and 4 for the same system. This function 
is zero in the high-temperature limit but is non-zero at low temperatures and depends on the 
sample shape. Figure 3 shows some results for a spherical sample and figure 4 for a sphere 
and an ellipsoid. The ellipsoid has axes in the ratio 1:23 and two different orientations of 
it in the magnetic field are considered. One case, denoted ‘et’, has the shortest and longest 
axes along the x and z directions, respectively, and the other case, denoted ‘ez’, has the 
shortest and longest axes in the z and x directions, respectively. It can be seen that the 
phase changes in a non-linear manner as a function of time in all cases and shows significant 
dependence on sample shape. The phase shift is not appreciable at short times and data at 
sufficiently long times would be required to observe the effect. 

The moments MI and Mz are also shown for the same system in figure 5. These are 
consistent with the results in figures 2, 3 and 4 but show the dependence on US across the 
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-0.5 I I I I I 
0.00 0.05 0.10 0.15 0.20 

t 
Figure 3. The phase function +(I) a5 defined by equation (32) for the I spin af an octahedral 
site in a spherical sample of crystalline copper and the magnetic field in the [IOO] and [I101 
directions. The solid eulves are the mulls for B/T = IOW T K-I (as = 0.5535). the 
shoI(-dashed curdes are for BIT = 20W T K-' (as = 1.107) and h e  long-dashed curves for 
B f  T = 4000 T K-' (CIS = 2.214). Ln the high-temperature limit (CIS + 0), $0) = 0. The 
curves illuspate the dependence of Ihe phase function on magnetic field and temperature for a 
given sample shape. ?he tine I is in the dimensionless unils defined in section 4. 

region where the behaviour changes from the high-temperature limit to the low-temperature 
limit. As in figure 1 it  is again apparent from these results that the transition regime is 
as-0 .1 -5 .  

In the high-temperature limit MZ and G(t)  are independent of the sample shape, 
G(t) N 1 - M z t 2 / 2  for small times and M I  = 0. At low temperatures MI(# 0) and 
MZ are shape dependent but G ( t )  is not. The small-t behaviour of G(t) in this case is 
G(t)  N I1 + iMlt - Mzt2/21 N 1 - ( M 2  - MT)t2/2 and (Mz - M:) is shape independent 
(see equation (35)) even though MI and M2 are shape dependent. 

5. Discussion 

The transverse depolarization function is the same for the RD of dilute nuclear spins in a 
crystal and for polarized muons implanted in metals after correction for the radioactive decay 
of the muon. This work describes the local field depolarization function for such systems, 
which is valid only for short times in the absence of diffusion and in the presence of a 
sufficiently large external magnetic field. There are few models for which the depolarization 
function can be. found exactly and the low-temperature. high-field model considered here 
provides an additional exact result. The dependence of the function on magnetic field B and 
temperature T arises through the parameter 01s = ( - b y s / k ) ( B / T ) .  In the high-temperature 
limit, as 5 0.1, the local field depolarization function in the laboratory frame, FL(t), is a 
decaying function G(t), which is not necessarily of Gaussian form, modulated by cos(u,f), 
where 01 = -yrB. The function G ( t )  is independent of B ,  T and sample shape. 

At larger values of B I T ,  in the range 0.1 (as (5, the function G(t)  decays more 



/ 
/ 

-0.5 I I I I 
. 

0.00 0.05 0.10 0.15 0.20 
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Figure 4. The phase function @ ( I )  as defined by equation (32) for the I spin at an octahedral 
site in a copper crystal and the magnetic field in the 11001 and [1101 directions Results are 
shown for BIT = IWO T K-I (as = 0.5535) and for the three sample shapes described in the 
text. The solid curves M the results for the sphere and the short-dashed and long-dashed curves 
are those for the ellipsoids ‘el’ and ‘ez’. respectively. The curves illustrate the dependence of 
the phase function OD the sample shape for a given magnetic field and temperature. The time t 
is in the dimensionless units defined in section 4. 

slowly and depends on BIT but is still independent of sample shape. The oscillating 
modulation of this function becomes cos[iujt + @(I)], where @ ( t )  is dependent on BIT 
and sample shape, for the component of the polarization in the x direction (direction of the 
initial polarization). The effect of the low temperatures could therefore be observed in the 
dependence of G(t) on BJT and also in the time-dependent phase shifts of the oscillations. 

At still larger values of BIT, for which (YS 2 5, the function G ( t )  -+ 1 and the 
modulating function becomes cos[(oj + Ml)t]. The value of the first moment M I  in this 
limit is independent of BIT but does depend on the shape of the sample. 

The results show that the high-temperature approximation is valid unless extreme 
conditions of low temperature and high magnetic fields (by current standards) exist. In 
cases where the high-temperature approximation is not valid, there are new features in the 
depolarization function: a time-dependent phase function @ ( t ) ,  shape dependence of some 
parameters and non-zero values of the first moment MI. 

Expressions have been derived for the depolarization function in all the above cases 
retaining only the local field ( A )  terms in the dipolar Hamiltonian for both the I -S  and S-S 
interactions. The flip-flop ( B )  terms are correctly omitted for the I -S  interactions since they 
are non-secular but they should be included in the indirect effect of the S-S interactions on 
the depolarization of the I spin. The effect of these terms will only be significant at long 
times since it can be shown that they do not contribute to the moments MI and M2 and 
therefore only contribute to order t3 in a Taylor expansion of the depolarization function. 
Further, the contribution of the B terms to higher moments is of order ys/y, so their effect 
will be small if ys (( y,. This will be the case for muons because of the large muon 
magnetic moment. 
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F i y r e  5. The hrst and second moments MI (in unitc of ]/a) and M2 (in units of l/u2) as 
functions of os for an I spin occupying an octahedral site in a copper crystd. The results are 
for the magnetic field in the 11001 direction and for the three sample shapes described in the 
text. The solid curves are the results for the sphere and the short-dashed and long-dashed curves 
are those for the ellipsoids 'el' and 'ez'. respectively. 
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